REPORT No. 2.

PART 2.

«

THE THEORY OF THE PITOT AND VENTURI TUBES.

By E. BUckINGHAM.

1. THE ENERGY EQUATION FOR STEADY ADIABATIC FLOW OF A FLUID.

Let a fluid be flowing steadily along a channel with impervious and
nonconducting walls, from a section 4 to a section 4,, the areas of the
sections perpendicular to the direction of flow being also denoted by
A and A4,. %y saying that the flow is ““steady” we do not mean that
it occurs in stream lines and without turbulence. We mean merel
that it is ‘‘sensibly” steady; i. e., that such variations of speed,

direction of motion, pressure, etc., as may occur at any point in the -

stream as a result of turbulence are so rapid that our measuring instru-
ments do not respond to them, but indicate only time averages; and
that these time averages are constant at any fixed point within the
channel. Values of a property of the fluid, or of any other quantity
such as speed, ““at a point,”’ are therefore to be understood as time
averages over a time which is long comﬁared with the speed of varia-
tion of the quantity to be measured, though it may appear short in
the ordinary sense. :

Let 6, p, v, ¢, T, rvespectively, be the absolute temperature,
static pressure, specific volume, internal energy per unit
mass, and kinetic energy per unit mass, at the entrance sec-
tion A. By the ‘“static pressure’ is meant the pressure which would
be indicated by a gauge moving with: the current. Let 6, p,, ;, ¢,
T, be the corresponding quantities at the exit section 4,. DBoth sets
of values are to %e understood as averages over the whole section, as
well as time averages in the sense explained above. The two sec-
tions shall be at the same level, so that the passage of fluid from 4
to A, does not involve any gravitational work.

As a unit mass of fluid crosses 4, the work pv is done on it by the
fluid following; and as it crosses 4, it does the work pu on the fluid
ahead. Since the walls of the channel are nonconducting, no heat
enters or leaves the fluid between A and 4,; hence the total energy,
internal plus kinetic, increases (or decreases) by an amount equal to
the work done on (or by) the fluid, and we have

Sl pv—p,=(g+T,)—(e+T)

‘ 1)
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102 AERONAUTICS.

So far no assumptions have been made and equation (1) is rigorousl

correet, for adia%atic flow between two sections at the same level.
Internal heating by skin friction or the dissipation of eddies is merely
a conversion of energy from one form into another and not an addi-

tion of energy; hence it does not affect the validity of equation (1)

and need not appear in it.
2. INTRODUCTION OF-THE MEAN SPEED INTO THE ENERGY EQUATION.

Let Q be the volume of fluid which crosses the section A per unit
time, and let S=Q + 4; then § is the arithmetical mean, over the sec-
“tion, of the component velocity normal to A and along the channel.
Let Q, and S, be the corresponding values at 4,. Measuring kinetic
energy, as well as work and internal energy, in normal mass-length-
time units, we then set

T—T,=—;- (§*—58,3) o @)

and proceed to substitute this expression for (T'—T,) in equation (1).

This substitution is indispensable to further progress, but it involves
an assumption which destroys the rigor of all further deductions.
The deductions are, nevertheless, very approximately confirmed by

experiment, and it is therefore worth while to examine the assump- -

tion. .
If there were no turbulence and if the speed were uniform over
each section, we should have the two separate equations

1 3
. T= 2S i

. , 3)
T,=1s7
1 9 1
and equation (2) would be exact. If there is no turbulence but the
speed of flow is nonuniform, approaching zero at the walls, as it must
where the channel has material walls, equations (3) will not be satis-
fied, but we shall have 7>1S8? and (h>s}8'12, because the mean
square speed, which determines the kinetic energy, is always greater
than the arithmetical mean speed S when the distribution over the
section is not uniform. With a round pipe and nonturbulent flow

T =%8? instead of 452 .

In nearly all practical cases the flow of fluids is turbulent and the
relation of the whole kinetic energy, including that of the turbulence,
to the arithmetical mean normal component of the speed at the given
section will depend on the amount of turbulence. - It is impossible
to say what the relation will be further than that the kinetic ener,
of eddies and cross currents tends to increase the error which would
be involved in assuming equations (3), while, on the other hand, the
fact that with increasing turbulence the speed becomes more nearly
uniform over a cross section tends to decrease the difference between
the mean square and the arithmetical mean of the component normal
to any section. : |
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The assumption involved in using equation (2) is not, however, so
violent as that which would be involved in using equations (3)
separately. For equations (3) are equivalent to

T-38°=T,~ 187 =0
whereas equation (2) is satisfied if , :

| T—387=T,— 487 " 4)
no matter what the vﬁlue is. Equation (4) and its eqﬁival;ent 2)

are satisfied if the error in assuming equations (3) to hold is the
same at both sections without vanishing or even being small. This

- will occur if the kinetic energy of turbulence is the same at both

sections and if also the speed distributions over the two sections are
such that the arithmetical mean normal speed is the same fraction

of the mean-square normal speed at both. While therefore it is
evident that the use of equations (3) separately might lead to con-
clusions at variance with facts, equation (2) may nevertheless be
nearly fulfilled in practice. The agreement: with observation of
deductions from equations (2) and (1) shows that in many ordinary
cases the error committed by treating equation (2) as exact is in

reality quite insignificant.

For geometrica'jly similar chiannels, the percentage error of equation
(2) depends only on Qv§’ in which » is the kinematic viscosity of the

fluid and D a linear dimension of the channel. With a given fluid in
8 given channel increasing § increases the turbulence, but it is
Q2
pot evident how this will affect the percentage error, %, Af
at all. Hence, it seems possible that although turbulence increases
... DS . . .
with = the percentage error in assuming equation (2) may
not increase but remain constant or even decrease. On the other
hand, at a given speed S, if %S' is increased by increasing D or dimin-
2T-8§

" ishing », the tur'bulence and the value of 1S will be increased

and there will be a greater chance that equation (2) may be sensibly
in error. At a given mean axial speed S we must therefore be pre-
pared, to find greater discrepancies between experiment and results
deduced from equation (2) for large channels and fluids of low
kinematic viscosity than for the opposite conditions. :

We shall now proceed as if equation (2) were rigorously exact, and

~ by combining it with equation (1) we obtain

3(S2 =87 = (&, +py0;) — (e+pv) : » ()

an equation which serves as the point of departure for the theory of
the Pitot tube, the Venturi meter, the steam-turbine nozzle, and
various other devices in which a stream of fluid is retarded or accele-
rated adiabatically. : '
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3. ISENTROPIC FLOW OF AN IDEAL GAS.

If the physical properties of the fluid have been sufficiently inves- -

tizated and if a sufficient number of quantities are measured at each
of the two sections, the value of (¢4 pv) may be computed for each
section and the value of (S2—S8,?) found from equation (5), to the
degree of approximation permitted by the assum%gions which have
been discussed above. A process somewhat of this nature is pur-
sued in the design of steam-turbine nozzles, (¢+ pv) being then the
quantity known as the total heat of steam.

But when the fluid is a gas, it is usual to proceed with deductions
from equation (5) by the aid of two further assumptions which
enable us to compute variations of ¢ and v from observations of p
alone. The first of these assumptions is that the fluid behaves sen-
sibly as an ideal gas defined by the equations

pv=Ro | (6)
e=et Oy (0-0) Y

in which C, is the specific heat at constant yolume, and ¢, is the
internal energy at the standard temperature 6,. The properties of
ordinary gases, such as air, carbon dioxide, or coal gas, when far
from condensation, are necarly in conformity with equations (6) and
(7), and for such fluids no serious error is involveg in making the
assumption mentioned, unless very great variations of pressure and
temperature are under consideration. Equations (6) and (7) imply
also the relation

OP = 00+R ' : (8)

in which C,, is the specific heat at constant pressure. ' :

The second assumption is that during the simultaneous changes of
pressure and temperature in passing from A to A, the familiar isen-
tropic relation for an ideal gas, viz,

A= .
0 _<p) * ' . ®)
remains satisfied, k¥ representing. C,/C,. This assumption is, of
course, not exact, for while we have stipulated that the flow shall be
adiabatic, the internal heating, due to viscosity causes an increase
of entropy. The assumption amounts, therefore, to assuming that
this irreversible internal Iileating is not enough to cause any sensible
increase of the temperature at A, over what it would be if there
were no internal heating at all.

The foregoing assumptions enable us to put equation (5) into a
more available form. %y substituting from (6) and (7) into (5),
and using (8), we have

3 (§=82)=C, (40) S0

By means of (9) and (6)', this may be written

b0 [(8)71]

and by (8) we get C

1
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and by (8) we get (/R =7c_7i—1 so that we have

do-sotie[@)F] o

which is the usual form of equation (5) for isentropic flow of an
idcal gas. If the speed is known at either section, equation (10)
enables us to find the speed at the other from a knowledge of C,
and an observation of the difference of temperature; while equation
(11) gives us similar information in terms of the pressures at 4 and
A, if the density and the ratio k are known. e shall apply this
equation to both the Pitot tube and the Venturi meter.

4. THE THEORY OF THE PITOT TUBE.

To treat the Pitot tube, we consider the fluid which is approaching
the dynamic opening. Starting at a point so far upstream that the
presence of the Pitot tube produces no sensible disturbance there, a
particle of fluid approaches the dynamic opening, slows down, and
mixes with the permanent high-pressure cap of nearly stationa
fluid, which covers the dynamic opening and communicates \Vig
the differential gauge through the impact tube. The same particle, -
or another indistinguishable from it, emerges from the cap and,
being accelerated by the now positive pressure gradient, flows on
along the impact tube, finally acquiring a sensibly constant speed
when it has reached a region of sensi%ly constant pressure. We
wish to apply equation (5) to this motion if we can find a plausible
way of doing so. =

Starting with the contour of a small plane area, in the undisturbed
current and perpendicular to its general direction, we construct, in
imagination, a tubular surface of which the sides are at every point
parallel to the mean direction of motion of the fluid past that point,
as found by averaging with regard to time. If the motion is not
turbulent, this tube is a tube of flow and no fluid passes in or out
through its sides. If the motion is turbulent, as it nearly always is
in practice, the same fluid does not flow continuously along the tube
as 1t would if the walls were impervious. On the contrary, particles
of fluid are continually leaving the tube in consequence of the tur-.
bulent time-changes of the direction of motion at any fixed point;
and these particles are continually replaced by others, of the same
total mass, which enter from without the tube. But on the whole,
the particles which enter have the same average component velocity
along the tube as those which leave; for unless this were true we
could, merely by imagining the tubular surface, generate within the
fluid a particular filament which was moving, on the whole, faster
or slower than the surrounding fluid. We conclude that the net
effect of turbulence is the same as if the imaginary tube walls were
made rigid and perfectly reflecting for mechanical impact without
exerting any skin friction on the fluid ﬁowin% along them.

If the whole current of fluid is at a sensibly uniform temperature
across its general direction, no heat passes In or out through the
tubular surface, and e%uation (5) may be applied as though we had
an impervious nonconducting channel to deal with. Furthermore,
if the tube is of small section, the axial speed, averaged with regard
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to time, will be the same at all points.of any one cross section. Hence
the application of equation (5), involving the assumption of equation

(2) or (4), is better justified than for a material tube in which skin

friction would cause the axial speed to be nonuniform over any
section. -

We now consider such an imaginary tube, starting in the undis-
turbed fluid some distance upstream from the dynamic opening of
the Pitot tube, passing into the high-pressure cap over the opening
and emerging again at the edge of the ogening, to continue its course
along the side of the impsact tube. The portion of the imaginary
tube which passes through the high-pressure cap may be regarded
as an enlargement of cross section at which the mean axial speed is
so reduced that its square is negligible in comparison with the square
of the speed at distant points. -If we let A'F be a section at some
distance upstream and A, be the section of the tube where it passes
through the high-pressure cap, S is negligible in comparison with $?
and equation (5) gives us N

S=+2Ale+po)— )] (12)

in which 8§ is the speed of the undisturbed current; ¢, p, and » refer
to conditions in the undisturbed current; and ¢, p,, v, refer to con-
ditions in the dynamic opening. The static pressure, which the
static opening is designed to receive and transmit to the gauge, is

while the pressure received by the dynamic opening is that in tgé :

permanent high-pressure cap, or p;. .

Equation (12) is the general form of the Pitot tube equation for any
fluid, whether compressible or not. In the case of a liquid, the
internal energy and specific volume are not appreciably affected by
the very smzﬁf pressure variations involved, so that we have ¢, =e
and »,=v and equation (12) reduces to

_ S=\/2v(pl—p)=\/2£‘;—p - . (13)

P being the density of the ;liquid. If the pressure difference is ex-
pressed as a head A of liquid of density d, we have p,—p=ghd and
equation (13) takes the form ’

S=‘/29%h - (14)

the usual form of the Pitot tube equation for a perfect or ideal tube,
Even when the fluid is a gas, if § is small and (p, —p) therefore also
small, ¢, and v, are nearly the same as ¢ and v so that equations (13)
and (14) remain approximately correct——admitting all the assump-
tions made—though it is not evident how close the approximation
will be. But if the speed and the pressure difference are great
enough to cause sensible compression, we must return to equation (5)
and introduce the conditions for adiabatic flow of a gas, as was done
in section 3 in arriving at equation (11). The fact that equation (14)
does agree well with observations on gas currents at moderate speeds,
shows that no great error is involved in neglecting compressibility

o e ——————

o+ RN o

and justifies us in goin
the gas as ideal and
pressibility.

Assuming, then, tha
current tube now und
equation

S

If we now set %=1 +.

: .
(p—!)“k“_l—1=1z

v »/ -

Setting the /....} =X

thatnAr—-lc—;—l =P
?

which differs from ec
pressibility, only in ti

n—1 (n—1
Aty

X=[1 +
The quantity A=E

mouth of the impact
quantity. The value

that n= k T is alway

X containing A are al
small the series conver
nearly equal to the firs
sum is negligible and .

The ratio of the spe
have

x={1

" If an error of Y per cen’

also be allowed in the «

at most, such as to ma

values of the error y
found from equation




T—

RPN

AERONAUTICS, 107

and justifies us in going on to find a closer approximation by treating
the gas as ideal and thereby using an approximation to the com-
pressibility. : ) .
Assuming, then, that equation (11) is applicable to the imaginary
current tube now under discussion, we have, by setting 5,>=0, the
equation : .

sVEGFT @

Ifwenowsetp‘ 14+A andT—-nwehave

(PN\EE L n—1 . (n—1) (n—2)
(p)'k l=nAll+—75— A+ 1.9.3 A'+ete. i

Setting the /. ...} = X? substituting in equation (15), and noticing

that n A=E—;—1 Di=P o have
P

S=X‘/2 -7 ' (16)

which _diﬁeré from equation (13), obtained by disregarding com-
pressibility, only in the correction factor C

X=f1+75 A+ 11.)2(.7;» Dpey 2 1)1(.7;2.32')4(1»‘ 3)As+"'} (17)

The quantity A=2=P s the fractional rise of pressure at the

mouth of the impact tube: hence it is, in practice, always a small
quantity. The value of % for gases is always between § and 1, so
that n=~¢

X containing A are alternately negative and positive and when A is
small the series converges rapidly, the sum of all the terms in A being
nearly equal to the first term alone, so that if the first is negligible the
sum is negligible and X may be set equal to unity. :

The ratio of the specific heats of air is 1.40. Hence n=2and we

is always between 2 and 0. Accordingly the terms of

7
have

5 10., 95 ¥ o
X.—={1—1—4A+@A’-—6§6A3+§tc.} (18) .

" If an error of vy per cent. in § is permissible, an error of ¥ per cent. may

also be allowed in the correction factor X and the value of A may be,
at most, such as to make :‘Z{LS A= %(—)
values of the error y per cent. in the speed, the value of S can be
found from equation (13). :

or A=0.056y. For any assigned
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Let us suppose, for example, that the Pitot tube is to be used for
measuring the speed of an aeroplane and that an accuracy of 0.5 per
cent. is sufficient. Then we have A=0.028 and p, —p=0.028 p. To
find what speed would give this head on the differential gauge, we
set p=1 atmosphere=1.013X10° dynes/cm.? and p=0.0013 gram/
cm.,* and substitute in (13), the result being S=66.1 m./sec.=212
ft./sec. =148 miles/hour. Since an accuracy of better than 1.0 per
cent. can hardly be demanded of an aeroplane speedometer, 1t is evi-
dent that for all ordinary speeds of flight, no correction for com-
pressibility is needed and equations (13) and (14) may be used.

It is of course a simple matter to compute values of the correction
factor X for various speeds; but in view of the uncertainties and
assumptions involved in the theory, the results would have a mis-
leading appearance of accuracy and would not in fact be worth the
labor of computation. What has been shown is sufficient, namely,
that if & Pitot tube does not measure the speed of an aeroplane cor-
rectly the error is not due to neglecting the compressibility of the air.

5. THE THEORY OF THE VENTURI METER.

The Venturi meter is a channel of varying cross section, and we
may apply to it the general equations of flow which have already
been developed. In doing so, we shall let A be the entrance section
of the meter where p is measured, and A, be the throat section at
which the diminished pressure p, is observed. We have to use
equation (5). . : S

If the meter-is used for measuring the flow of a liquid of density p
we may set ¢, =¢ and v, =v as we di% in treating the Pitot tube, and
equation (5) then gives us

82— =2 PP R (19)

P

Neither S nor 8, vanishes; but in addition to (19) we have the equa-
tion of continuity which for a fluid of constant demsity may be
written :

S A,=84 ’ 20y

and (19) and (20) together enable us to find either S or S,. If we
represent the area ratio by a single symbol

% =a>1 (21)
we have N
8= B\/ 2 1%1 (22)
where )
1
B=ya=1 23)

and B is a constant characteristic of the given meter.
Comparing (22) with (13), the equation for the Pitot tube in a
liquid, we see that they differ only by the factor B which depends on
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thearearatioa. Ifa=+2, B=1 and the observed Venturi pressure
difference (p—p,) will be the same as would be shown by a Pitot
tube with its dynamic opening in the cntrance of the meter. For

various values of the ratio D of entrance diameter to throat diameter.

we have the following values of B: -

D

= L5 2.0 2.5 3.0 4.0
a=  2.25  4.00 6.25  9.00 16. 00
B= 1569 3.874 6.170  8.944  15.77

Evidently, the Venturi pressure difference mai easily be made much
larger than the Pitot pressure difference at the entrance speed and
the gauge reading be made much more sensitive. .

If the fluid is a gas instead of a liquid, compressibility will still be

- negligible at sufficiently low speeds, as for the Pitot tube, and equa-

tion (22) may be used; but in general the compressibility must be
allowed for. To treat the flow of a gas, we have to make the same
assumptions as in section 3, namely, that the gas is sensibly ideal
and that the flow from the entrance section A to the throat ‘A, is
sensibly isentropic, the combined effect of heat conduction to or
from the walls of the meter, and of internal beating in the gas itself,
being insignificant. We then have to apply equation (11) to the
case in hand, and if for simplicity we represent the pressure ratio
by a single symbol and write - o

Borc1 24
? r< (24)
we have by equation (11)
’ 2k -y .
81-8'=5=; {} 1—rF _ (25)

p being the densif,y of the gas at the pressure p as it crosses the
entrance section.

To combine with (25) we have the equation of continuity
8, A, p,=84p

and if we remember that during isentropic compression or expansion

of an ideal gas pv* remains constant, the equation of continuity
may be written

8,=7m8 | (26)

By using (26) to eliminate S, from (25) we now obtain the equation
2k LS N E T

S={k__—ia,—_r7/k—p(l—rk } @27

bg means of which the entrance speed S may be computed from the
observed pressure ratio r=p,/p when the area ratio a and the
properties of the gas are known. Since we are treating the gas as
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ideal, p/p is, for any given gas, proportional to the absolute tempera-
ture @ at the entrance section, and we may write §=%—’ g., po being
0 Vo

the density of the gas at the standard pressure p, and temperature go.
For air, —CT”=k=1.4O and if we insert the known value of p, at
1 atmosphere”and 0° C. and set

8= Y\/%j | @8)

2%k r2% E=1\p 14
vel e (1T

where

we have the values of Y shown in the following_ table for various
pressure ratios r and for meters in which the throat diameter is

‘4, %, or } of the entrance diameter, i. e., a=4, 9, or 16. If ¢is the

‘)
temperature at entrance, on the centigrade scale % =%—t while if
] .

t is measured on the Fahrenheit scale,

0_ ___460 -+t
8, -492
TrE VENTﬁRI METER FoR AIR.
Values of Yin S=T- :—
(]

A _ entrance area
A, throat area

=throat pressure—i—entrénce pressure=p,/p _ O=absolute temperature of air at
. entrance.

) 6,=absolute temperature of ice point.
Values of Y. ’

a=4 a=3 a=16

M.jsec. | Ft.jsec. |Milefhour.| M.[sec. | Ft.[sec. Mile/hour.{ M.fsec. | Ft./sec. | Mile/hr.

09998 | 1.44 4.74 3.231 0.626! 2.05] 1.4001 0.350 | 1.150 | 0.784
. 999 3.23 1 10.60 7.23 ] L40 4.59{ 3.13 0.784 | 2.57 1.753
. 995 7.21| 23.65| 16.13 | 3.12 -|10.24| 6.98 1.75 5.74 3.91
.99 10.16 | 33.34 | 22.7 4.40 |14.11| 9.85 | .2.47 | 8.09 5.562
.98 14.3 46.48 | 32.0 6.19 {20.3 |13.85 3.47 | 11.38 7.76

.9 22.2 72.8 49.6 | 9.62 {31.6 |2L5 5.39 | 17.7 12. 06
.90 30. 4 99.8 68.0 ;13.2 43.4 129.6 7.41 | 24.3 16. 57
.80 40.2 | 13L.7 89.8 }17.5 57.5 139.2 9.82 |32.2 22.0 -
.60 48.1 |157.9 |107.6 (211 69.3 | 47.2 11.86 | 38.9 26.5

Computed on the assumptions pv==Rf, Cy=constant, %P ==1.400.
f . 1 4

Po=1.01323 X108 dyne/cm?.
p0=0.0012928 gm cm? at 760 mm. and 0° C
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